The 1st International Workshop on

Quantum Resource Estimation

ROOM 103b, 22 June, Phoenix, Arizona

co-located with International Symposium on Computer Architecture (ISCA) 2019

About The Workshop Call for Papers

About QRE

This is the first international workshop on the emerging field of Quantum Resource Estimation (QRE), benchmarking and performance analytics. We hope to encourage participation from those working in quantum algorithm optimization, error-correction, architecture design, quantum compilation, classical control and resource benchmarking.

The workshop is focused around developing techniques and tools that aid quantum software and algorithm design, informed by the realities of the hardware architectures. QRE shifts the perspective from complexity theoretic arguments to quantitative computer architecture arguments.

The goal is to reduce the physical resource1 costs for interesting quantum algorithms as quickly as possible. Small-scale, cloud-based NISQ machines sparked the interest of exact, realistic and non asymptotic resource estimations. It is still uncertain if any valuable quantum algorithm2 is possible without incorporating costly error-correction protocols that make estimation, benchmarking and optimization far more complex. QRE is the forum to share research on the near term feasibility of interesting2 quantum algorithms.


Alexandru Paler, Linz Institute of Technology, Linz, Austria

Simon Devitt, University of Technology, Sydney, Australia

Daniel Herr, RIKEN, Wako-shi, Japan


1Physical resources for executing a quantum algorithm can vary significantly. Resource costs are influenced by the resultant quantum circuits through their structure and designed precision. Additional overheads are introduced by the physical constraints of the quantum hardware. Quantum error correction is also resource hungry. Even the design and the performance of the classical control software that compiles algorithms and controls the quantum computer has a non-negligible impact on resources.

2Algorithm that outperforms classical supercomputers either in a theoretical or monetary sense.

Quantum computation has a growing number of promising application areas such as quantum chemistry, quantum optimisation and finance. However, the first industrially relevant and scalable quantum computer seems to be at least a decade away. Therefore, one of the most pressing questions is "How many physical qubits and how much time is necessary to execute a quantum algorithm on a selected hardware platform where the algorithmic output is more important than the fact a quantum computer was used to calculate it?"

By examining this question in depth we can motivate continued investment for quantum computing, further enable resource friendly quantum algorithm development and continue to push technological advances that will lead to a scalable quantum computing ecosystem.

The workshop will bring together researchers to discuss new methods and directions needed to develop, as soon as possible, the tools to:

  • accurately analyze and benchmark complex quantum algorithms
  • adapt error-correction techniques
  • refine classical control and hardware microarchitectures
  • enable scientifically and commercially relavant quantum applications

Research papers, tutorials, software and other demonstrations, and work-in-progress reports are within the scope of the workshop. Invited talks by leading international experts will complete the program. Contributions on all areas of quantum performance analytics are welcome:

  • High level quantum circuit analytics.
  • Fault-tolerant quantum circuit analytics.
  • Clifford+T optimisation strategies.
  • Resource efficient surface code implementations.
  • Surface code decoders.
  • Practical quantitative analysis of surface code alternatives.
  • Noisy Intermediate Scale Quantum (NISQ) evaluation.

Initial submission for QRE2019 will consist of an extended abstract, limited to 2+epsilon-pages (including figures and references, please don't go nuts with the epsilon!). Contributions must be written in English and report on original, unpublished work, not submitted for publication elsewhere.

Upon acceptance, researchers are invited to submit full research papers (maximum 12 pages), as well as work-in-progress or tool demonstration papers (maximum 6 pages). Accepted full papers will be published in a journal (subject to the journal being approved - IEEE Transactions on Quantum Engineering; otherwise a backup journal TBD exists).

Important Dates

Submission Site

Extended Abstract Submission: 21 April 2019
Notification Extended Abstract: 12 May 2019
Workshop Date: 22 June 2019
Full Paper Submission: 1 August 2019
Notification of Full Paper: (tentative) 1 November 2019
Publication of Full Paper: (tentative) 1 January 2020
Room No: 103 b

Invited Speakers

Speaker 1

Joseph Fitzsimons

Horizon Quantum

Speaker 2

Yipeng Huang

Princeton University

Speaker 3

Craig Gidney


Speaker 3

Daniel Litinski

Free University, Berlin

Speaker 3

Christian Gogolin


Speaker 3

Brad Lackey


Event Schedule Room 103 b


Alexandru Paler

Joseph Fitzsimons

Verifiable Hybrid Secret Sharing: Reducing Quantum Resources

Victoria Lipinska, Glaucia Murta and Stephanie Wehner

Fault-tolerant quantum error correction on NISQ devices: flag and bridge qubits

Lingling Lao and Carmen G. Almudever

Minimizing State Preparations for VQE

Pranav Gokhale, Olivia Angiuli, Yongshan Ding, Kaiwen Gui, Teague Tomesh, Margaret Martonosi and Frederic T. Chong

Craig Gidney talk

Coffee Break

Fault tolerant resource estimation of quantum random-access memories

Olivia Di Matteo, Vlad Gheorghiu and Michele Mosca talk

Characterizing Quantum Processors Using Modeling and Simulation

Megan Lilly and Travis Humble talk

Yipeng Huang talk

Lunch Break

Daniel Litinski

Reducing the cost of implementing AES as a quantum~circuit

Brandon Langenberg, Hai Pham and Rainer Steinwandt talk

Decoding Quantum Error Correction Codes with Local Variation

Michael Hanks, William Munro and Kae Nemoto

Coffee Break

Enhancing a Near-Term Quantum Accelerators Instruction Set Architecture for Materials Science

Xiang Zou, Shavindra Premaratne, Adriaan Rol, Sonika Johri, Viacheslav Ostroukh, David J Michalak, Roman Caudillo, James S Clarke, Leonardo DiCarlo and Anne Y Matsuura

Christian Gogolin

Determining the capacity of any quantum computer to perform a useful computation

Joel Wallman and Joseph Emerson talk

Mitigation of readout noise by classical post-processing based on Quantum Detector Tomography

Filip Maciejewski, Michal Oszmaniec and Zoltan Zimboras talk

Brad Lackey


Daniel Herr


Use the ISCA Registration page and select the 'ISCA19' activity. Our workshop is on Sat 6/22.
If you are not attending any other workshop, tutorial, or conference at FCRC, select 'One Day Workshop/Tutorial' Registration.

For any questions contact the workshop organisers.

Participants will receive a 40% discount code valid for two months for all Manning products in all formats.

Five randomly chosen participants will receive the eBook
Learn Quantum Computing with Python and Q# by Sarah C. Kaiser and Christopher E. Granade